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A B S T R A C T

Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug re-
purposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vo-
cabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as
medical concept normalization. This task is challenging due to the differences in the use of medical terminology
between health care professionals and social media texts coming from the lay public. To bridge this gap, we use
sequence learning with recurrent neural networks and semantic representation of one- or multi-word expres-
sions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term
Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based
on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results
over an effective baseline for classification based on convolutional neural networks. A qualitative examination of
mentions discovered in a dataset of user reviews collected from popular online health information platforms as
well as a quantitative evaluation both show improvements in the semantic representation of health-related
expressions in social media.

1. Introduction

Recent years have seen many new applications of natural language
processing (NLP) to biomedical information. Much of this work has
been focused on the central task of information extraction, in particular
named entity recognition (NER) from scientific literature and electronic
health records. However, comparatively little work has been carried out
to automatically process social media comments of individuals under-
going medical treatment.

Social media nowadays is a virtually inexhaustible source of peo-
ple’s opinions on a wide variety of topics. In this work, we are focusing
on patients’ opinions on drug effects, i.e., patient reports. In effect,
social media provide huge datasets of people’s opinions complete with
demographic information and often much more detailed data regarding
a specific user. We expect that continuous advancement and improve-
ment in the accuracy of text mining approaches applied to patient re-
ports in social media will have a significant impact in several areas
including pharmacovigilance (especially for new drugs), drug re-

purposing, and understanding drug effects in the context of other fac-
tors such as concurrent use of other drugs, diet, and lifestyle.

In this work, we study the problem of discovering disease-related
medical concepts from patients’ comments on social media. In the
context of this problem, we translate a text written in “social media
language” (e.g., “I can’t fall asleep all night” or “head spinning a little”)
to “formal medical language” (e.g., “insomnia” and “dizziness”, re-
spectively). This goes beyond simple matching of natural language
expressions and vocabulary elements: string matching approaches are
not able to link social media language to medical concepts since the
words may not overlap at all. We call the task of mapping everyday life
language to medical terminology medical concept normalization. The
main benefit of solving this task is bridging the gap between the lan-
guage of the lay public and medical professionals.

This task is difficult given that patients use social media to discuss
different concepts of illness (ranging from well-defined conditions such
as “major depressive disorder” to informal phrases describing specific
symptoms such as “woke up too early” or “mucus building up in my
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lungs”) and a wide diversity of drug reactions (e.g., “excessive sweating
at night”, “slept like a baby”, or “clearing up an infection”). Moreover,
social network data usually contains a lot of noise, such as misspelled
words, incorrect grammar, hashtags, abbreviations, and different var-
iations of the same word.

Formally, this task is related to several NLP challenges, including
paraphrase detection, word sense disambiguation, and entity linking
where an entity mention is mapped to a unique concept in an ontology
after solving the disambiguation problem [1,2]. To address the chal-
lenges described above, recent studies treat the task of linking a one- or
multi-word expression to a knowledge base as a supervised sequence
labeling problem. Miftahutdinov and Tutubalina [3] proposed an en-
coder-decoder model based on bidirectional recurrent neural networks
(RNNs) to translate a sequence of words from a death certificate into a
sequence of medical codes. Two research groups [4,5] presented two
systems with similar performances that utilize RNNs for normalization
of tweets’ phrases at the AMIA 2017 Social Media Mining for Health
Applications workshop, while Limsopatham and Collier [6] experi-
mented with convolutional neural networks (CNNs) on social media
data. These works demonstrate the first attempts to use deep learning
methods for medical concept normalization.

2. Background

Automatic extraction of health-related information from social media is
a strong trend in related research nowadays. This task provides a challen-
ging and rich context to explore computational models of natural language,
motivating new research in computer science and computational linguistics.
For an excellent overview of the work on social analytics for healthcare
done up to 2015, see [7], which demonstrates how social media data can be
used to mine health-related knowledge.

There exist many applications where a system needs to mediate
between natural language expressions and elements of a vocabulary in
an ontology. Huang and Lu [8] survey the work done in the organiza-
tion of biomedical NLP (BioNLP) challenge evaluations up to 2014.

In this section, we give an overview of major findings in previous
research on terminology association. In biology, a common task is to
identify gene and protein names in text and link them to standard
sources such as Entrez Gene. Biomedical researchers have addressed the
needs to automatically detect diseases as well as corresponding acro-
nyms and abbreviations in the scientific literature (e.g., BioCreative V
lab). Recent open challenge evaluations have also focused on named
entity recognition (NER) of disease names in clinical notes (e.g., ShARe/
CLEF eHealth, SemEval 2014). Ontologies of medical concepts such as
the Unified Medical Language System (UMLS) [9], the Systematized
Nomenclature Of Medicine Clinical Terms (SNOMED-CT) [10], the
Medical Dictionary for Regulatory Activities (MedDRA) [11], and the
International Classification of Diseases (ICD-9, ICD-10) are widely used
for this task. We note that there is no agreed definition of a disease in
general, and diseases may be classified differently by different clin-
icians [12]. UMLS is undoubtedly the largest lexico-semantic resource
for medicine which represented over more than 150 lexicons with terms
from 25 languages. In particular, ICD and SNOMED-CT are subsets of
UMLS. Every concept is represented by its Concept Unique Identifier
(CUI). UMLS has integrated resources used worldwide in clinical care,
public health, and epidemiology.

Automatic approaches to BioNLP tasks roughly fall into two cate-
gories: (i) linguistic approaches based on dictionaries, association
measures, morphological and syntactic properties of texts [13–17]; (ii)
machine learning approaches [18–21,6,3]. Recent studies have em-
ployed deep learning models such convolutional neural networks [6,5]
or recurrent neural network architectures [3,5,4].

In the rest of the section, we describe methods that were trained on
publicly available data of different health-related sources and related to
the shared tasks such as Social Media Mining shared tasks, CLEF eHealth
tasks, and SemEval tasks.

2.1. Bio- and medical natural language processing

A lot of work in bio- and medical NLP has been focused on language
evaluation, information retrieval, and extraction from electronic med-
ical records and biomedical academic literature. In their book, Cohen
and Demner-Fushman [22] gave an overview of major challenges and
the work done in biomedical NLP up to 2014.

The most popular knowledge-based system for mapping texts to
UMLS concept identifiers (CUI) is MetaMap [13]. MetaMap was de-
veloped by the National Library of Medicine (NLM) in 2001 and has
become a de facto baseline method for many recent studies. This system
is based on a linguistic approach using lexical lookup and variants by
associating a score with phrases in a sentence. General limitations of the
linguistic method include low recall of information extraction from
social media and unavailability for under-resourced natural languages.

The ShARe/CLEF eHealth 2013 lab addressed the problem of iden-
tification and normalization of disorders from clinical reports in Task 1
[23]. The corpus consists of discharge summaries and electro-
cardiogram, echocardiogram, and radiology reports received from US
intensive care. Each disorder mention is mapped to a UMLS code or a
SNOMED-CT code. The best results were achieved with a DNorm system
by NCBI team [18]. Leaman et al. introduced a DNorm system for as-
signing disease mentions from PubMed abstracts a unique identifier
from a MEDIC vocabulary, which combines terminology from Medical
Subject Headings (MeSH) and Online Mendelian Inheritance in Man
(OMIM) [19]. DNorm consists of a text processing pipeline, including
the named entity recognizer to locate diseases in the text, and a nor-
malization method. The normalization method is based on a pairwise
learning-to-rank technique using the tokens from all mentions as fea-
tures. DNorm outperformed MetaMap as the baseline.

The SemEval 2014 lab addressed the problem of analysis of clinical
data in Task 7 [1]. This task was a follow-up to the ShARe/CLEF
eHealth 2013 task 1 using a larger test set and a larger set of unlabeled
MIMIC notes to inform models and generalize lexical features. The best
results were obtained by UTH_CCB and UWM teams [17,16]. In [16],
the UWM team present a pattern-based system that consists of several
steps. First, the system looks for exact matches with disorder mentions
in the training data and in the UMLS. Second, for every mention
without exact matches, suitable variations were generated based on
Levenshtein distances between the variations. Edit distance patterns
were computed between all synonyms of the disorder concepts is UMLS
as well as between their mentions in the training data. In [17], the
UTH_CCB team used the cosine similarity scores between disorder en-
tity and all UMLS terms to rank candidate terms.

The CLEF Health 2016 and 2017 labs addressed the problem of
mapping death certificates to ICD codes. Death certificates are stan-
dardized documents filled by physicians to report the death of a patient
[24]. Most submitted methods utilized dictionary-based semantic si-
milarity and, to some extent, string matching. Mulligen et al. [14] ob-
tained the best results in task 2 by combining a Solr tagger with ICD-10
terminologies. The terminologies were derived from the task training
set and a manually curated ICD-10 dictionary. They achieved an F-
measure of 84.8%. Mottin et al. [15] used pattern matching approach
and achieved the F-measure of 55.4%. Dermouche et al. [20] applied
two machine learning methods: (i) a supervised extension of Latent
Dirichlet Allocation (LDA), i.e., Labeled-LDA and (ii) Support Vector
Machine (SVM) based on bag-of-words features. For Labeled-LDA, they
used ICD-10 codes from the training set as classes. The Labeled-LDA and
SVM classifier achieved F-measures of 73.53% and 75.19%, respec-
tively. This study did not focus on designing effective features to obtain
better classification performance. Zweigenbaum and Lavergne [25]
utilized a hybrid method combining simple dictionary projection and
mono-label supervised classification. They used Linear SVM trained on
the full training corpus and the 2012 dictionary provided for CLEF
participants. This hybrid method obtained an F-measure of 85.86%. The
participants of task 2 did not use word embeddings or deep neural
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networks. Recently, Miftakhutdinov and Tutubalina [3] obtained the
best results in the CLEF eHealth 2017 task 1, training an LSTM-based
encoder-decoder architecture. As input, the network uses the certifi-
cates’ text lines that contained terms that could be directly linked to a
single ICD-10 code or several codes. As output, the network predicts a
sequence of codes. The model obtained an F-measure of 85.01% on
English texts. Word embeddings trained on social media texts improved
the results significantly over embeddings on medical articles down-
loaded from BioMed Central.

2.2. Word sense disambiguation and entity linking

Capturing semantic similarity or relatedness between one- or multi-
word expressions has many applications in NLP including paraphrase de-
tection, machine translation, word sense disambiguation (WSD), and entity
linking (EL). Over the last decade, NLP community has tackled EL (or entity
disambiguation) which aims to link mentions of entities to a knowledge
base (KB) such as, e.g., Wikipedia. Word sense disambiguation (WSD) is
another closely related problem that addresses the lexical ambiguity of text
by making explicit the meaning of words occurring in a context [26].
Herein, we briefly describe recent research on EL and WSD which is a
closely related task to concept normalization studied in this work. A detailed
overview of the research on these topics can be found in [26,27].

Recent research on EL has focused on training neural networks and
word embeddings for capturing characteristics of an entity at various
levels of information. He et al. proposed a deep learning approach that
learns context-entity similarity measure in which representations are
learned with Wikipedia annotations [28]. Huang et al. leveraged both
structured and contextual information from large-scale semantic
knowledge graphs and deep neural networks for EL [29]. Gupta et al.
proposed a training objective to learn unified entity embeddings that
encode text description in KB, contexts from documents, and sets of
fine-grained types [30]. Babelfy [31] is the state-of-the-art unified ap-
proach to WSD and EL. This graph-based approach exploits the se-
mantic network which encodes rich structural and lexical information
of WordNet and various KBs. Raganato et al. [32] compared several
neural architectures for WSD including bidirectional LSTM and a se-
quence-to-sequence model. They adopted the SemCor corpus which
consists of a subset of the Brown Corpus (approximately 240,000 sense-
annotated words). LSTM with an attention layer outperformed the en-
coder-decoder model and achieved state-of-the-art results over several
supervised and knowledge-based systems in benchmarks.

Thus, there are several main challenges in adopting WSD and EL
systems for medical concept normalization in social media texts related
to the health domain. First, it is difficult to match the phrase to the
correct concept in social media texts due to shorter local and document-
level context of an entity. Second, there is a large language difference
between medical terminology and patient vocabulary [33]. Third,
UMLS includes a large number of non-noun concepts [34], while many
existing knowledge-based systems such as Babelfy [31] take into ac-
count only nominal and named entity mentions occurring within a text.
Finally, Wikipedia contains different kinds of information about entities
such as textual description, linked mentions, while the content of UMLS
is limited and complex. In [34], Nadkarni et al. explored the feasibility
of using UMLS to identify concepts in discharge summaries and surgical
notes. They concluded that concept indexing by UMLS can’t be the only
production-mode means of preprocessing medical narrative and in-
dicated potential problems. In [35], Polepalli et al. evaluated a method
for linking EHR notes to three knowledge resources: Wikipedia, UMLS,
and MedlinePlus. In particular, their method utilized first three lines of
a Wikipedia page and definitions of UMLS concepts. Experiments
showed that linking to Wikipedia yielded the best performance, yet
Wikipedia does not integrate classification and coding standards.
Therefore, development of WSD and EL methods for health domain is
challenging research topic, but will not be discussed further in this
paper. We note this topic as a possible direction for further work.

2.3. Concept normalization in social media posts

While there has been a lot of work on named entity recognition from
social media posts done over the past 7 years [36,37,2,38–43], rela-
tively few researchers have looked at assigning social media phrases to
medical identifiers. The first Social Media Mining shared task workshop
(organized as part of the Pacific Symp. on Biocomputing 2016) was
designed to mine pharmacological and medical information from social
media, with a competition based on a published dataset [40]. Task 3 of
this competition is devoted to medical concept normalization, where
participants were required to identify the UMLS concept for a given
ADR. The evaluation set consisted of 476 ADR instances. Sarker et al.
[40] noted that there had been no prior work on normalization of
concepts expressed in social media texts, and task 3 did not attract
much attention from the academic community.

Recently, two teams, namely UKNLP [4] and gnTeam [5], partici-
pated in the Second Social Media Mining for Health (SMM4H) Shared
Task and submitted their systems for automatic normalization of ADR
mentions to MedDRA concepts. For the task 3, Sarker et al. [44] created
a new dataset of tweets’ phrases. The training set for this task contains
6,650 phrases mapped to 472 concepts, while the testing set consisted
of 2,500 phrases mapped to 254 classes. We also note that organizers of
this task did not describe the corpus creation in details as well as not
providing corpus statistics, e.g., the overlap percentage between
training and testing sets. Teams’ systems showed similar results. The
gnTeam’s approach contained three components for preprocessing and
classification. The first two components corrected spelling mistakes and
converted sentences into vector-space representation, respectively. For
the third step, GnTeam adopted multinomial logistic regression model
which achieved the accuracy of 0.877, while the bidirectional GRU
achieved the accuracy of 0.855. As input, the network adopted the
GoogleNews embeddings trained on a Google News corpus due to
higher results the highest performance over embeddings trained on
tweets. The ensemble of both classifiers showed slightly better perfor-
mance and achieved the accuracy of 0.885. The UKNLP’s system
adopted hierarchical LSTM in which a phrase is segmented into words
and each word is segmented into characters. Word embeddings were
trained on a Twitter corpus. Hierarchical Char-LSTM achieved the ac-
curacy of 0.872, while hierarchical Char-CNN performed slightly better
and achieved the accuracy of 0.877. We note this corpus of tweets for
future work since the official test data is available for the shared task
participants only by the time of publication.

Recently, Limsopatham and Collier [6] experimented with Con-
volutional Neural Networks (CNN) and pre-trained word embeddings
for mapping social media texts to medical concepts. For evaluation,
three different datasets were used. The authors created two datasets
with 201 and 1,436 Twitter phrases which mapped to concepts from a
SIDER database. The third dataset is the CSIRO Adverse Drug Event
Corpus (CADEC) [2] which consists of user reviews from askapatient.
com. The authors observed that training can be effectively achieved at
40–70 epochs. As input, the network concatenated embeddings of
words. The GoogleNews embeddings improved results significantly
over embeddings on medical articles. Experiments showed that CNN
(accuracy 81%) outperformed DNorm (accuracy 73%), RNN (accuracy
80%) and a multi-class logistic regression (accuracy 77%) on the As-
kAPatient corpus (as well as corpora of tweets). This work is the closest
to ours in the use of deep learning technology and semantic re-
presentation of words. However, we found that only approximately
40% of expressions in the test data are unique, while the rest of ex-
pressions occur in the training data. Therefore, the presented accuracy
may be too optimistic. We believe that future research should focus on
developing extrinsic test sets for medical concept normalization.

To sum up this section, we note that there has been little work on
medical concept normalization in social media posts, and most methods
in the biomedical domain have so far dealt with extracting information
from the mention itself, ignoring the broader context of the text
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document where it occurred.

3. Material and methods

In this section, we discuss major challenges in the medical concept
normalization task and present recurrent neural networks and archi-
tectures such as LSTM and GRU.

3.1. Recognition of different word variants

The task of medical concept normalization is closely related to the
problem of word sense disambiguation and terminological variation.
We briefly describe major challenges faced by disease mention re-
cognition methods as well as term extraction methods:

(a) lexical, morphological, and syntactic variants: failure weight gain –
failure to gain weight (CUI C0231246), hypertension – high blood
pressure disorder (CUI C0020538), auricular fibrillation – atrial
fibrillation (CUI C0004238);

(b) paraphrases, synonyms: acute disorder – acute disease (CUI
C0001314), a drop of cholesterol – lower total cholesterol (CUI
C1868135), concentration lack – unable to concentrate (CUI
C0235198);

(c) abbreviations: ADDH, ADHD – attention deficit hyperactivity dis-
order (CUI C1263846), AIDS – acquired immunodeficiency (CUI
C0596032), AF – atrial fibrillation (CUI C0004238);

(d) ambiguity: aspiration – pulmonary aspiration (CUI C0700198) or
aspiration pneumonia (CUI C0032290);

(e) misspellings, slang terms, and shortened forms of words: probs with
sleeping, dont sleep to well – difficulty sleeping (CUI C0235162),
not sure footed as I walked – unsteady when walking (CUI
C0231686), afib, a fib – atrial fibrillation (CUI C0004238).

The examples described above are associated with Concept Unique
Identifiers (CUI) from UMLS.

3.2. Neural networks

At present, neural networks represent a widely used machine
learning framework applicable to a wide variety of tasks, especially
data-intensive ones and tasks dealing with unstructured data such as
images or natural language. A neural network (NN) itself is a compu-
tational graph of a specific kind. The simplest kind of NNs are the so-
called Feed-Forward Networks (FFN). One feed-forward layer in a FFN

is a transformation of an input vector to a output vector by multiplying
it by some weight matrix and applying some non-linear function
afterward. More information on basic NNs can be found in, e.g.,
[45,46].

3.2.1. Recurrent neural networks
While FFNs are simplest and in a way most general kind of NNs,

there are other specific types of computational graphs that are espe-
cially useful for particular tasks. One of such specific types are
Recurrent Neural Networks (RNN). The RNNs are applied for processing
of sequential data such as time series or word sequences. The key fea-
ture of that architecture is information sharing between timesteps.
More specifically, popular variants of RNNs that we discuss later in this
chapter use the notion of a state for RNN, which at every time step is
received by the RNN from the previous timestep. This mechanism is
depicted on Fig. 1a.

3.2.2. Long short-term memory
The Long Short-Term Memory (LSTM) architecture is inspired by

human brain short-term memory mechanism [47]. The idea behind it is
to have some explicit memory cell for information storage and then an
additional mechanism to operate with this memory. This mechanism
consists of two [47] or three [48] non-linear functions applied to:

• input, i.e. what should be added to the memory cell,

• output, i.e. how strong we want the output signal to be,

• forget, i.e. how much of stored information we want to throw off.

These non-linear functions are called gates. These considerations are
more formally spelled out in Eq. (1), and the graphical representation
can be found on Fig. 2a.

Formally speaking, an LSTM has an input gate, forget gate, and output
gate, together with the actual recurrent cell with a hidden state. We
denote by xt the input vector at time t; by ht, the hidden state vector at
time t; by Wx· (with different second subscripts), matrices of weights
applied to the input; by Wh·, matrices of weights in recurrent connec-
tions; by b, the bias vectors. In this notation we get the following formal
definition: on step t, having received input xt , previous hidden state

−ht 1, and cell state −ct 1, LSTM computes ht.

Fig. 1. Recurrent neural networks: (a) a regular RNN; (b) a bidirectional RNN.
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3.2.3. Gated recurrent units
The Gated Recurrent Unit (GRU) is another common approach to

memorize the state between timesteps. It was introduced in [49]. The
GRU has only two gates, namely reset & update gates:

• reset gate is analogous to the forget gate in LSTM,

• update gate can be considered as combination of input and output
gates.

The graphical representation can be found on Fig. 2b. A formal
representation of GRU is shown in Eq. (2). Denoting by xt the input
vector at time t, by ht the hidden state vector at time t, by Wx· (with
different second subscripts) the matrices of weights applied to the
input, by Wh· matrices of weights in recurrent connections, and by b the
bias vectors, we get the following formal definition: on step t, having
received input xt , and previous hidden state −ht 1, GRU computes ht as
follows.
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Recent extensive practical comparisons indicate that GRUs achieve
similar performance on sequence modeling problems [50], and due to
fact that GRU has lesser number of trainable parameters, GRU becomes
more and more popular.

3.2.4. Bidirectional RNN
Another option to alleviate the forgetfulness of RNNs is to use two

RNNs in opposite directions on the input: one in standard direction
from start to end, and another one from end to start [51]. RNN outputs
for the corresponding sequence points are concatenated together. This
approach, known as bidirectional RNNs, is presented on Fig. 1b.

3.3. Neural network architecture for concept normalization

We propose a deep learning approach for mapping entity mentions
to medical codes. We first convert each mention into a semantic re-
presentative vector using bidirectional LSTM or GRU with an attention
mechanism on top of the embedding layer. For activation, we use the
hyperbolic tangent = − +− −a e e e etanh( ) ( )/( )a a a a . Then, a set of features
are extracted using the cosine similarity between mentions and medical
concepts from the UMLS Metathesaurus. For model training, we use the
cross-entropy error between the data distribution and predicted dis-
tribution as the loss function. This model is depicted in Fig. 3.

3.3.1. Semantic similarity features
We extract a set of features to enhance the representation of the

phrases. These features consist of the cosine similarity between the
vectors of the input phrase and a concept in a medical terminology
dictionary. This dictionary includes medical codes and synonyms from
the UMLS Metathesaurus (version 2017 AA), where codes are presented
in the CADEC corpus. We apply three strategies to create representa-
tions of a concept and a mention and compute the cosine similarity
between the representations of each pair:

• TF-IDF (ALL): we represent a medical code as a single document by
concatenating synonymous terms; then, we apply the TF-IDF
transformation on the code and the entity mention and compute the
cosine similarity;

• TF-IDF (MAX): we represent a medical code as a set of terms; for each
term, we compute the cosine distance between its TF-IDF re-
presentation and the entity mention and then select the largest si-
milarity;

• W2V (ALL): we represent a medical code as a single document by
concatenating synonymous terms; then we embed a code and an
entity mention as averaged sums of the embeddings of its words and
compute the cosine similarity.

We use all these additional features for the experiments.

3.3.2. Pre-trained word embeddings
Neural networks require word representations as inputs. We in-

vestigate the use of several different pre-trained word embeddings.
Recent advances have made distributed word representations into a
method of choice for modern NLP [52]. In this model, each word from
the dictionary is mapped to a Euclidean space �d (i.e., to a vector of d

Fig. 2. Modern RNN units: (a) LSTM; (b) GRU.
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real numbers), in an attempt to capture the semantic relationships be-
tween the words as geometric relationships in �d. In a way, word em-
beddings rely upon what is long known in linguistics as the distributional
hypothesis: words with similar meaning will occur in similar contexts
[53]. The two most commonly used modern models for word embed-
dings, Continuous Bag-of-Words (CBOW) and skip-gram, were both in-
troduced in [54].

We utilize word embeddings named HealthVec: publicly available
200-dimensional embeddings that were trained on 2,607,505 unlabeled
user comments (93,526 terms) from health information websites using
the CBOWmodel in [41]. We also experimented with another published
200-dimensional embeddings named PubMedVec (2,351,706 terms),
which were trained on biomedical literature indexed in PubMed [55].

4. Experimental evaluation

In this section, we present the results of our evaluation study. The
purpose of our evaluation is to determine how well recurrent neural
networks can identify the corresponding medical concepts based on
informal language from patients’ texts.

4.1. Data set

We conducted experiments on a collection of user reviews obtained
from the CADEC corpus [2]. This corpus contains 1,250 reviews and
consists of four predefined disease-related types: ADR (6,318 entities),
Disease (283 entities), Symptom (275 entities), and Clinical Finding
(435 entities). Authors reported that only 39.4% of the annotations
(including drugs) were unique; people generally discussed similar re-
actions. Disease and Symptom specify the reason for taking the drug.
Patients may mention the name of a disease or the symptoms that led to
them taking a drug. Findings are any adverse side effects, diseases, or
symptoms that were not directly experienced by the reporting patient.

We did not distinguish between these types and joined them into one
class of annotations named Disease.

All entities in the CADEC corpus were mapped to SNOMED CT-AU
(SCT-AU) by a clinical terminologist. SNOMED CT is a clinical termi-
nology that provides codes, synonyms, and definitions of clinical terms,
and can be accessed through the UMLS Metathesaurus. Additionally,
concepts identified in the SNOMED CT were associated with MedDRA
identifiers. In this work, we adopted only SNOMED CT identifiers and
removed ‘concept less’ or ambiguous mentions for evaluation purpose.
Table 1 shows final statistics for the CADEC corpus. The total number of
unique codes was 1,029.

4.2. Preprocessing and experimental settings

Preprocessing includes spelling correction and lemmatization using
the Natural Language Toolkit (NLTK). We performed 5-fold cross-vali-
dation to evaluate our methods. We found that a standard cross-vali-
dation method creates a high overlap of expressions in an exact match
between training and testing parts. Therefore, the split procedure has a
specific feature in our setup.

For preprocessing, we first removed all duplicates in each dataset.
Second, we grouped medical records we are working with into sets that
were each related to a specific medical code. Every such set was split
independently into k folds, and all these folds were merged into final k
folds. This procedure is formalized in Algorithm 1. We have made the
resulting folds publicly available1.

Algorithm 1. Split dataset into the folds for evaluation

1: procedure SPLIT D C k( , , )
2: D - set of medical records
3: C - medical codes
4: k - number of folds
5: F - final split
6: for =i 0 to k do
7: ≔ ∅Fi
8: end for
9: for c in C do
10: = ∀ ∈g d D d{ : relates to c}
11: =E kfoldsplit g k( , )
12: for =i 0 to k do

Fig. 3. Proposed architecture for medical concept normalization.

Table 1
Statistics of the dataset used in the experiments.

Entity type Total Unique phrases Unique SNOMED codes

ADR 5838 3241 788
Disease 266 165 108
Drug 1657 290 124
Finding 399 270 180
Symptom 251 128 78

1 https://yadi.sk/d/oLBTUpXg3RtCzd.
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13: ≔ ⋃F F Ei i i

14: end for
15: end for
16: return F
17: end procedure

4.3. Baseline system

For comparison, we applied state-of-the-art baselines based on
convolutional neural networks. In [6], experiments showed that CNN
outperformed existing strong baselines such as DNorm and Logistic
Regression, as well as unsupervised metrics such as TF-IDF, BM25, and
cosine similarity between a phrase and a medical concept.

In order to obtain local features from a text with CNNs, we used
multiple filters of different lengths [56]. The architecture is illustrated
in Fig. 4. At the same time, each filter on a hidden layer was replicated
across the entire input vector, learning the same localized features in
every part of the input. Convolutional layers are usually interleaved
with pooling or subsampling layers that combine the subsets of the
input and output the maximum values of all features; here the idea is
that a higher-level feature’s exact location is less important than its
interaction with other neighboring features. In one-dimensional CNNs,
these are usually the max-over-time pooling layers, which output the
maximal value of a feature map along with a window.

4.4. Model configuration and training

Since neural networks, especially deep neural networks, have a very
large number of free parameters, problems with overfitting are in-
evitable, and some form of regularization is required. In the now-
common dropout technique [57], units in a neural network are “swit-
ched off” at random during training, thus making each unit learn a
useful feature “by itself” since it cannot rely upon other units to be
present to form compositions with it. We used a dropout rate of 0.5 after
the embedding layer (and before the networks’ layers).

Another standard technique in modern deep learning, batch nor-
malization [58], was designed to cope with a problem known as cov-
ariate shift. For all networks, we set the mini-batch size to 128 to
minimize the negative log-likelihood of correct predictions.

The last important set of advances deal with actually training the
model. We used a popular adaptive gradient descent variation, Adam
[59]. Embedding layers are trainable for all networks. The number of
outputs of the layer with the softmax activation equals to the number of
unique concept codes. Additionally, we separated out 10% of the
training set to form the validation set that was used to evaluate dif-
ferent model parameters. The number of epochs is determined by early

stopping on the validation set. We employed early stopping after two
epochs with no improvement on the validation set. The final number of
epochs was 15.

For RNN, we utilized either a 100- or 200-dimensional hidden layer
for each RNN chain. For CNN, we adopted effective parameters from
[56,6]. We used the filter w with the window size h of [3, 4, 5], each of
which had 100 feature maps. Pooled features were fed to a fully con-
nected feed-forward neural network (with dimension 100) to make an
inference, using rectified linear units as output activation.

We found 91% and 88% of words from the CADEC corpus voca-
bulary in the vocabularies of HealthVec and PubMedVec word em-
beddings respectively. For other words, their representations were
uniformly sampled from the range of embedding weights [60].

4.5. Results

The standard technique for evaluating concept normalization is to
compare correctly normalized disorder mentions against gold standard
entities [23,1]. We used accuracy as the performance measure, defined
as follows:

=Accuracy N
T

,correct

g (3)

where Ncorrect is the number of correctly normalized disorder mentions
and Tg is the total number of disorder mentions in the gold standard.

Table 2
The accuracy performance of neural networks.

Model Parameters Accuracy

CNN HealthVec, 100 feature maps 46.19
CNN PubMedVec, 100 feature maps 45.79

LSTM HealthVec, 200 hidden units 64.51
LSTM PubMedVec, 200 hidden units 64.24

GRU HealthVec, 200 hidden units 63.05
GRU PubMedVec, 200 hidden units 62.73
LSTM+Attention HealthVec, 200 hidden units 65.73
LSTM+Attention PubMedVec, 200 hidden units 64.92
LSTM+Attention HealthVec, 100 hidden units 64.83
GRU+Attention HealthVec, 200 hidden units 67.08
GRU+Attention PubMedVec, 200 hidden units 66.55
GRU+Attention HealthVec, 100 hidden units 66.56

With prior knowledge
LSTM+Attention HealthVec, 100, similarity: TF-IDF (ALL) 67.63
LSTM+Attention HealthVec, 200, similarity: TF-IDF (ALL) 66.83
GRU+Attention HealthVec, 100, similarity: TF-IDF (ALL) 69.92
GRU+Attention HealthVec, 200, similarity: TF-IDF (ALL) 69.42
GRU+Attention HealthVec, 100, similarity: W2V (ALL) 69.14
GRU+Attention HealthVec, 100, similarity: TF-IDF (MAX) 70.05

Fig. 4. A convolutional neural network with 1D convolutions over a text.
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We present experimental results of different neural architectures in
Table 2. Attention-based GRU with prior knowledge achieved an ac-
curacy of 70.05%. The best results were obtained while using vectors
trained on social media posts. GRU consistently outperformed CNNs
and LSTM in terms of accuracy. Attention mechanism and prior
knowledge from the UMLS Metathesaurus indeed led to quality im-
provements for both GRU and LSTM.

We evaluated the performance of our best model on entity mention
phrases of different lengths. Statistics of phrases is presented in Table 3.
As can be seen from the results in Table 4, GRU with attention and
similarity features TF-IDF (MAX) achieved the best results at 72.91% ac-
curacy and 72.15% accuracy on three-word and four-word expressions,
respectively.

The comparison between the proposed method and existing state-of-
the-art methods on the CADEC corpus is provided in Table 5. We
trained and evaluated GRU with attention and similarity features TF-IDF
(MAX) on folds2 (namely AskAPatient folds) from [6]. Experimental re-
sults shown in Table 5 show significant improvements in the concept
normalization performance using GRU with attention and prior
knowledge. Additionally, we evaluated our best model with different
sizes of HealthVec embedding vectors. As it can be seen from Table 6,
changing the size of the embedding vector from 200 to 400 did not
significantly influence the results.

We explored the quality metrics for the number of training epochs
ranging from 0 to 60. Fig. 5 presents the results achieved on the testing
set by training with different numbers of epochs. It shows that training
of neural networks can be effectively achieved at around 8–15 epochs
before improvements in accuracy become small.

5. Discussion

5.1. Failure analysis

The primary goal of our model was to map disease-related mentions
into medical codes. We evaluated the capability of the attention-based
GRU in fulfilling this goal and examined the output of our network. One
limitation of deep learning technique is the need for sufficient training
data; otherwise, RNNs do not perform well on rare, long, discontiguous,
and overlapping expressions. For example, the mention “toes became so
painful” is automatically associated with the concept “Pain” (SNOMED
ID 22253000), while the ground truth label is the less frequent concept
“Pain in toe” (SNOMED ID 285365001). Handling discontiguous ex-
pressions may involve word reordering: “toes became so painful” into
“painful toes”. Another group of errors is related to expressions that
overlap in meaning and share similar characteristics. For example, GRU
associates the mention “could only walk less than 100 meters” with the
concept “Walking disability” (SNOMED ID 228158008), while the
ground truth concept is “Reduced mobility” (SNOMED ID 8510008).
The mention “foggy thinking” is automatically associated with “Unable
to think clearly” (SNOMED ID 247640008), while the ground truth
concept is “Mentally dull” (SNOMED ID 419723007). The group of
errors is related to the problem of ambiguity of one-word expressions.
For example, “stiff” is automatically associated with “Stiff legs”
(SNOMED ID 225609009) instead of “Stiffness” (SNOMED ID
271587009). We believe that these errors may be solved with advanced
language modeling techniques and mark these models as future work.

5.2. Qualitative analysis

The primary goal of applying bidirectional RNNs to medical concept
normalization is to capture “semantic representation” of a text based on
not only the past but also the future context on every time step.
Therefore, we selected several examples of disease-related entity men-
tions with corresponding medical concepts discovered in social media
posts. First, many patients are regularly unsure of the spelling of
medical terms such as diarrhea, which justifies the need for spelling

Table 3
Summary of statistics of entity mention phrases of different
length.

Length of a mention # Mentions

1 11
2 558
3 1064
4 739
5 531

6 or longer 662

Table 4
The performance of GRU+Attention with sim. features TF-
IDF (MAX).

Length of a mention Accuracy

1 67.16
2 71.43
3 72.91
4 72.15
5 65.49

6 or longer 50.12

Table 5
The accuracy performance of our proposed model and the state-of-the-art
methods on AskAPatient folds.

Model Accuracy

DNorm [6] 73.39
CNN [6] 81.41
RNN [6] 79.98

GRU+Attention (HealthVec, 100, TF-IDF (MAX)) 85.71

Table 6
The accuracy performance of GRU+Attention with sim. fea-
tures TF-IDF (MAX) and different embedding dimensions

Embeddings Accuracy

100-dimensional HealthVec 65.82
200-dimensional HealthVec 70.05
300-dimensional HealthVec 69.48
400-dimensional HealthVec 69.37

Fig. 5. Performance on the testing set achieved by training with different
numbers of epochs.

2 DOI: doi:https://doi.org/10.5281/zenodo.55013.

E. Tutubalina et al. Journal of Biomedical Informatics 84 (2018) 93–102

100



correction. Second, patients report disease mentions with multi-word
expressions more frequently than with single words. Finally, patients
tend to reformulate some medical terms into semantically similar
words. For example, the sense of pain linked with the concept of “Pain
in lower limb” is frequently replaced by words such as killing, hurting,
and aching. The sense of the specific term impairment, associated with
the concept of “Memory impairment”, is frequently replaced by more
general words such as loss, poor, fog, weakened, and difficulty. The sense
of the word raised in the concept of “Serum cholesterol raised” is fre-
quently replaced by words such as high, went up, elevated, and jumped,
climbed. Therefore, the social media domain poses additional challenges
that string matching techniques are not able to handle. The semantic
information encoded in word embeddings trained on a large corpus of
health-related consumer comments is critically important for model
performance.

5.3. Limitations

We acknowledge three groups of limitations to this study. First,
there are certain limitations associated with the data. One potential
drawback of any supervised model is the lack of data for its develop-
ment and evaluation. One of the main challenges is the lack of anno-
tated corpora that cover various domains of texts across languages,
categories of diseases, and concepts from biological thesauri. Existing
corpora contain texts about a specific group of drugs or diseases. Hence,
the coverage of rare adverse events or diseases is limited, and trained
models might not accurately assign codes of rare terms to textual
fragments. Second, most existing corpora contains disease mentions
linked to their corresponding concepts in a particular resource, such as
SNOMED, MeSH, ICD-10, or MedDRA. Therefore, models are limited by
a controlled vocabulary and do not predict a variety of related medical
concepts with different identifiers. In this paper, our model predicts
medical codes in SNOMED only. We note that the linking of some
SNOMED terms with UMLS concepts are ambiguous and one-to-one
mapping between entries in SNOMED and another terminology dic-
tionary (e.g., MedDRA) using UMLS is not always possible.

Second, the use of large-scale prior knowledge from UMLS brings
new challenges. The number of unique concepts in a large knowledge
base such as the UMLS Metathesaurus is often very large (more than 3
million concepts), which makes classification methods and integration
of linguistic knowledge very computationally expensive. In this study,
we did not integrate all medical concepts from UMLS. As future work,
we plan to investigate the use of UMLS for learning concept embed-
dings.

Finally, another limitation is that the current model architecture
does not allow for predicting a sequence of medical concepts associated
with a particular disease mention. Our model is insufficient for sen-
tences, overlapping annotations or multi-word expressions associated
with more than one concept. For instance, the expression “severe pain
in my left arm” is associated with both “Severe pain” (SNOMED ID
76948002) and “Pain in left arm” (SNOMED ID 287045000) in the
CADEC corpus of user reviews, while the sentence “CAD/s/pCABG/
Volume overload” is associated with “Acute coronary artery disease”
(ICD code I251) and “Fluid overload” (ICD code E877) in the CDC
corpus of death certificates used in the CLEF eHealth 2017 Evaluation
Lab Task 1. This task has recently received research attention and some
of the proposed methods, such as the encoder-decoder model, may be
useful in this regard in the future.

6. Conclusion

In this work, we have applied various deep neural networks, in
particular LSTM- and GRU-based architectures with attention, to the
problem of normalizing medical concepts expressed in the free-form
language of social networks. We obtained very promising results, both
quantitatively and qualitatively. Finally, we also showed that adding

hand-crafted features does further improve performance.
We foresee three directions for future work. First, the use of novel

architectures based on the recurrent neural networks that are currently
used for machine translation and similar problems (e.g., dialogue and
conversational models) for biomedical text processing looks promising
and remains to be explored. Future work might focus on paraphrase
generation and an encoder-decoder architecture since RNNs can be
naturally used to probabilistically model a sequence. Second, a pro-
mising research direction is the integration of linguistic knowledge into
the models. Third, future research might focus on developing extrinsic
test sets for medical concept normalization.
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